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Nonnegative Inverse Eigenvalue Problem (NIEP)

Given a finite list Λ = {s1, ..., sn} of complex numbers, the NIEP
asks for necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n entrywise-nonnegative matrix.



Background on the problem

In further pursuit of a solution to the NIEP, Loewy and London
[MR0480563] posed the problem of characterizing all polynomials
that preserve all nonnegative matrices of a fixed order.
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Notation

▶ Mn(R) denotes the set of all n-by-n real matrices.

▶ R[t] is defined as all polynomials of a finite degree with real
coefficients

▶ Pn := {p ∈ R[t] : p(A) ≥ 0,∀A ≥ 0,A ∈ Mn(R)}
▶ The first n terms is defined as terms {0, 1, ..., n} of the

polynomial.

▶ The last n terms is defined as terms {m,m − 1, ...,m − n},
where m is the degree of the polynomial.

▶ The set ⟨m⟩ are the natural numbers from 0 to m inclusive.



Remainder polynomials

Let n ∈ N and r ∈ {0, 1, . . . , n − 1}. If

I(r ,n) := {k ∈ N | k ≡ r mod n},

then the polynomial

p(r ,n)(x) :=
∑

k∈I(r,n)

akx
k ,

is called the r mod n part of p or the r mod n remainder
polynomials.



Circulant matrices

▶ A circulant is a matrix of the form

A = circ(a0, a1, . . . , an−1) =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0

 .

▶ There is a special type of circulant called the fundamental
circulant or push circulant which has the following form

C := circ(0, 1, 0, ..., 0) =


0 1

0 1
. . .

. . .

0 1
1 0





Fundamental circulant

▶ Any circulant matrix can be decomposed into a polynomial
made with the fundamental circulant. Let
A = circ(a0, a1, . . . , an−1), then

A = pA(C ) = an−1C
n−1 + an−2C

n−2 + · · ·+ a1C + a0I .

For those interested, this is also the characteristic polynomial
for A.

▶ The fundamental circulant forms a cycle of length n, that is
Cm = Cnq+r = C r for any m ∈ N, r ∈ ⟨n − 1⟩.



Polynomials and the fundamental circulant

Using the fact that the fundamental circulant forms cycles, we can
“decompose” our polynomial into it’s n remainder polynomials.

p(xC ) =
m∑
j=0

ajx
jC j

=
m∑
j=0

ajx
jC j mod n

= circ

 n−1∑
j∈I(0,n)

ajx
j ,

n−1∑
j∈I(1,n)

ajx
j , ...,

n−1∑
j∈I(n−1,n)

ajx
j


= circ

(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.



Circulants Results

For a polynomial p to be in Pn the following are necessary

▶ The n remainder polynomials of p must be in P1.

▶ For a polynomial p to be in Pn, the first n terms of p must
be nonnegative.

▶ For a polynomial p to be in Pn, the last n terms of p must be
nonnegative.

These results can be derived from

p(xC ) = circ
(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.



Jordan Block

If n ∈ N, n > 1, and λ ∈ C, then Jn(λ) denotes the Jordan block
with eigenvalue λ, i.e.,

Jn(λ) =


λ 1

λ 1
. . .

. . .

λ 1
λ

 ∈ Mn(R).



Jordan Blocks Results

▶ If p ∈ Pn, then p, p(1), p(2), ..., p(n−1) ∈ P1

This comes from the following fact

p(J(x)) =



1 ··· k ··· n

1 p(x) · · · p(k−1)(x)
(k−1)! · · · p(n−1)(x)

(n−1)!

...
. . .

. . .
...

k p(x) p(k−1)(x)
(k−1)!

...
. . .

...
n p(x)





Lemma allowing positive matrices

Lemma
If p ∈ R[x ], then p ∈ Pn if and only if p(A) ≥ 0 whenever A > 0.

Proof.
Follows from the continuity of p and the fact that the set of
positive matrices of order n is dense in the set of all nonnegative
matrices of order n.



Lemma 2x2 matrix similar form

Lemma
Let A ∈ M2(R) and suppose that A > 0. If σ(A) = {ρ, µ}, with
ρ > |µ|, then A is similar to a matrix of the form

1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
,

where α > 0.



Proof
By the Perron–Frobenius theorem for positive matrices, there is a
positive vector x such that Ax = ρx . If D = diag(x1, x2), then the
positive matrix

B := D−1AD

has row sums equal to ρ. Thus, there is an invertible matrix

Ŝ =

[
1 â

1 b̂

]
such that

B = Ŝ

[
ρ 0
0 µ

]
Ŝ−1.

If

S := Ŝ

[
1 0
0 1/â

]
=

[
1 1
1 a

]
,

where a = b̂/â, then

B = S

[
ρ 0
0 µ

]
S−1.



Proof cont.

Furthermore, a < 0 (otherwise,

B =
1

1− a

[
aρ− µ µ− ρ
a(ρ− µ) aµ− ρ

]
and b12 < 0). Thus,

S =

[
1 1
1 −α

]
, α > 0,

and

B =
1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
. (1)



Characterization of 2× 2 nonnegative matrices

Theorem
If p ∈ R[x ], then p ∈ P2 if and only if pe , po , p

′ ∈ P1 and
yp(x) + xp(−y) ≥ 0 for all 0 < y < x .



Proof of 2x2 case, necessary

▶ If p ∈ P2, the circulants and Jordan blocks show
pe , po , p

′ ∈ P1.

▶ Let ρ and µ be real numbers such that 0 < µ ≤ ρ and let

A =

[
0 ρ
µ ρ− µ

]
=

1

ρ+ µ

[
ρ 1
−µ 1

] [
−µ 0
0 ρ

] [
1 −1
µ ρ

]
,

then

p(A) =
1

ρ+ µ

[
ρp(−µ) + µp(ρ) ρ(p(ρ)− p(−µ))
µ(p(ρ)− p(−µ)) ρp(ρ) + µp(−µ)

]
≥ 0.



Proof of 2x2 case, sufficient

▶ If pe , po , p
′ ∈ P1 and yp(x) + xp(−y) ≥ 0 for all 0 < y < x ,

then let A be a positive matrix with spectrum {ρ, µ} by our
Lemma we can assume A is similar to a matrix of the form

B =
1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
.

▶ The worst case for α is µ/ρ. Following that we can
diagonalize B with diagonal entries ρ and −µ the polynomial
of B can be written as

p(B) = Sp(D)S−1 =
1

1 + α

[
αp(ρ)− p(−µ) p(ρ)− p(µ)
α(p(ρ)− p(µ)) αp(µ) + p(ρ)

]
.



Ratio condition?

The ratio condition is defined as yp(x) + xp(−y) ≥ 0 for all
0 < y < x .

▶ If the polynomial is totally even, p = pe , then the polynomial
always satisfies the ratio condition. This comes from
pe(−y) = pe(y).

▶ If the polynomial is totally odd, p = po , then the polynomial
satisfies the ratio condition if and only if p′′ ∈ P2. This
follows from po(−y) = −po(y) and the ratio condition
becomes yp(x)− xp(y) ≥ 0 for all 0 < y < x .



Next steps

▶ Explore more into what the ratio condition means.

▶ Give explicit condition for being in P3.

▶ Give explicit conditions for polynomials preserving nonnegative
circulants.

▶ If the first and last terms are nonnegative, can the rest be
nonpositive?

▶ For any length of polynomial with any size of matrix can the
largest term by absolute value be negative?
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Questions?
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