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Nonnegative Inverse Eigenvalue Problem (NIEP)

Given a finite list Λ = {s1, ..., sn} of complex numbers, the NIEP
asks for necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n entrywise-nonnegative matrix.
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Background on the problem

In pursuit of a solution to the NIEP, Loewy and London in
1978 posed the problem of characterizing all polynomials that
preserve all nonnegative matrices of a fixed order.

Clark and Paparella in 2021 showed the set of polynomials
that preserve nonnegative matrices form a convex
non-polyhedral cone with respect to the coefficients of the
polynomials.

Lowey in 2023 considered restricting the degree of the
polynomials and showed that polynomials of degree 4 form a
non-polyhedral cone with respect to 2 by 2 nonnegative
matrices.
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Notation

Mn denotes the set of all n-by-n real matrices.

A ∈ Mn is nonnegative, denoted A ≥ 0, if it is entry-wise
nonnegative. Similar definition for a positive matrix.

M≥0
n and M+

n denotes the sets of all n-by-n real nonnegative
matrices and real positive matrices.

R[t] is defined as all polynomials of a finite degree with real
coefficients

The first n terms of a polynomial are the terms indexed by
{0, 1, ..., n − 1}. Similar definition for the last n terms.

The set ⟨m⟩ are the natural numbers from 1 to m inclusive.
The set ⟨m⟩0 also includes 0.

Benjamin J. Clark

The cone of polynomials that preserve nonnegative matrices



Background Known polynomial results Introduction to Cones Main result Conclusion

Sets of polynomials that preserve nonnegative matrices

The set of polynomials that preserve nonnegative matrices of a
given order is defined as

Pn := {p ∈ R[t] | p(A) ≥ 0, ∀A ∈ M≥0
n }.

Also define the set

Pn,m := {p ∈ Pn | degree(p) ≤ m},

where we restrict the degree of the polynomials.
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Nonnegative polynomials

Lemma

If p ∈ R[x ] such that all the coefficients of p are nonnegative, then
p ∈ Pn for every n ≥ 1.

Question

When can the coefficients of the polynomials be negative?
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Remainder polynomials

Let n ∈ N and r ∈ ⟨n − 1⟩0. If

I(r ,n) := {k ∈ N | k ≡ r mod n},

then the polynomial

p(r ,n)(x) :=
∑

k∈I(r,n)

akx
k ,

is called the r mod n part of p or the r mod n remainder
polynomial.
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Circulant matrices

A circulant is a matrix of the form

A = circ(a0, a1, . . . , an−1) =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0

 .

There is a special type of circulant called the fundamental
circulant or push circulant which has the following form

C := circ(0, 1, 0, ..., 0) =


0 1

0 1
. . .

. . .

0 1
1 0


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Properties of the fundamental circulant

Any circulant matrix can be decomposed into a polynomial
made with the fundamental circulant. Let
A = circ(a0, a1, . . . , an−1), then

A = pA(C ) = an−1C
n−1 + an−2C

n−2 + · · ·+ a1C + a0I .

The fundamental circulant forms a cycle of length n, that is
Cnq+r = C r for any r ∈ ⟨n − 1⟩.
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Polynomials and the fundamental circulant

Using the fact that the fundamental circulant forms cycles, we can
“decompose” our polynomial into it’s n remainder polynomials.

p(xC ) =
m∑
j=0

ajx
jC j

=
m∑
j=0

ajx
jC j mod n

= circ

 n−1∑
j∈I(0,n)

ajx
j ,

n−1∑
j∈I(1,n)

ajx
j , ...,

n−1∑
j∈I(n−1,n)

ajx
j


= circ

(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.
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Circulants results

For a polynomial p to be in Pn the following are necessary

The n remainder polynomials of p must be in P1 (for all
x ≥ 0, p(x) ≥ 0).

For a polynomial p to be in Pn, the first n terms of p must be
nonnegative.

For a polynomial p to be in Pn, the last n terms of p must be
nonnegative.

These results can be derived from

p(xC ) = circ
(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.
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Jordan block

If n ∈ N, n > 1, and λ ∈ C, then Jn(λ) denotes the Jordan block
with eigenvalue λ, i.e.,

Jn(λ) =


λ 1

λ 1
. . .

. . .

λ 1
λ

 ∈ Mn(R).
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Jordan Blocks Results

Lemma

If p ∈ Pn, then p, p(1), p(2), ..., p(n−1) ∈ P1.

This comes from the following fact

p(J(x)) =



1 ··· k ··· n

1 p(x) · · · p(k−1)(x)
(k−1)! · · · p(n−1)(x)

(n−1)!

...
. . .

. . .
...

k p(x) p(k−1)(x)
(k−1)!

...
. . .

...
n p(x)


Benjamin J. Clark

The cone of polynomials that preserve nonnegative matrices



Background Known polynomial results Introduction to Cones Main result Conclusion

Lemma allowing positive matrices

Lemma

If p ∈ R[x ], then p ∈ Pn if and only if p(A) ≥ 0 whenever A > 0.

Proof.

Follows from the continuity of p and the fact that the set of
positive matrices of order n is dense in the set of all nonnegative
matrices of order n.
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Subsets

Lemma

For all n ≥ 1, Pn+1 ⊂ Pn.

Consider A ∈ Mn such that A ≥ 0, then for p ∈ R[x ] to be in
Pn+1 we need that

p (diag(A, 0)) ≥ 0.

The proof for the subset being strict is more involved, but was
shown by Lowey in 2023.
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Polynomial with negative coefficients

Theorem

Let p ∈ R[x ] such that

p(x) =
2n∑
k=0
k ̸=n

akx
k − xk ,

then there exists ak ≥ 0 such that p ∈ Pn.

The proof for the existence of this polynomial in Pn is very
involved and was one of the main results of Lowey’s 2023 paper.
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Convexity and convex combinations.

Definition

Let C be a subset of a real vector space X , then C is convex if for
all t ∈ [0, 1] and x , y ∈ C we have tx + (1− t)y ∈ C .

Definition

Let C be a real vector space, then a convex combination is a
linear combination where all the coefficients are nonnegative and
sum to 1. That is for x1, x2, . . . , xn ∈ C a convex combination is

α1x1 + α2x2 + · · ·+ αnxn

where αi ≥ 0 and α1 + α2 + · · ·+ αn = 1.
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Example: A triangle is convex
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Cones

Definition

Let C be a subset of a real vector space X , then C is called a cone
if it is closed under positive scalar multiplication.

Definition

A cone C is called a convex cone if it is closed under convex
combinations.
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Example: Cone made from three vectors
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Polyhedral cones

Definition

Let C be a real vector space, then a conical combination is a
linear combination where all the coefficients are nonnegative. That
is for x1, x2, . . . , xn ∈ C a convex combination is

α1x1 + α2x2 + · · ·+ αnxn

where αi ≥ 0.

Definition

A cone C is polyhedral if it is the conical combination of finitely
many vectors (this property is called finitely-generated).
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Example: The polyhedral cone of a matrix

Let

A =

1 0 1.5
0 0 1
1 1 0

 ,

then we can generate a polyhedral cone by taking conical
combinations of the columns of A.
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Non-polyhedral cones

A cone is called non-polyhedral if it is not a polyhedral cone. In
particular for this talk that means that the cone is not able to be
generated by a finite number of vectors.
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Example: Ice cream cone

x

y

z
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Extremal vectors and faces of a cone

Definition

An extremal vector is a vector that can’t be written as the conical
combination of two or more other vectors in the cone.

Definition

Let C be a cone and F ⊆ C also be a cone, then F is a face of C
if for all x ∈ F we have that y ∈ C and x − y ∈ C implies y ∈ F .
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The cone generated by Pn

The set R[x ] forms a vector space and Pn ⊆ R[x ] forms a convex
non-polyhedral cone.

Pn is non-polyhedral since the degree of the polynomials can
be arbitrary giving a non-finite number of generators.

Pn is convex since if p(A) ≥ 0 and q(A) ≥ 0, then
tp(A) + (t − 1)q(A) ≥ 0 for all t ∈ [0, 1].
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When is Pn,m polyhedral?

For m < 2n we know that Pn,m is the m + 1 degree
nonnegative orthant which gives that Pn,m is polyhedral. In
particular it is generated by {1, x , x2, . . . , xm}.
However as in the previous slide as m goes to infinity Pn,m

becomes non-polyhedral.

So when does that switch occur?
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Face Pn,2n is a face of Pn,m

Lemma

Let m > 2n, then Pn,2n is a face of Pn,m

Lowey’s proved this in his 2023 paper. The idea is that Pn,2n forms
a subspace of Pn,m.
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The cone generated by P2,4 is non-polyhedral

Theorem

P2,4 is non-polyhedral.

This was the other main result of Lowey’s 2023 paper. The
proof is very long and relies heavily on the full
characterization of P2.

This gives the conjecture that P2,2n is non-polyhedral for all
n ≥ 1.
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Possible extremal generators of Pn,2n

Polynomials with nonnegative coefficients are always in Pn,2n,
so the set {1, x , x2, . . . , x2n} forms some of the extremal
generators of Pn,2n.

From Lowey’s 2023 paper we know that there always exist
polynomials whose first and last n terms are nonnegative and
whose middle xn term has negative coefficients. So for Pn,2n

to be polyhedral we need the set of extremal polynomials that
generate those to be finite.
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Mapping positive matrices to nonnegative matrices

Definition

Let p, q ∈ R[x ], then define

gp,q,t(x) = tp(x) + (1− t)q(x).
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Time to wiggle

Lemma

Let X = {x , x2, . . . , xn} and P = {pi}mi=1 ⊂ Pn,2n where

pi (x) =
2n∑
k=0
k ̸=n

ai ,kx
k − xn.

Then if gp,q,t is not extremal for any t ∈ (0, 1), p ∈ P, and q ∈ X.
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Time to wiggle cont.

Any polynomial in X maps positive matrices to positive
matrices.

Any polynomial in P maps positive matrices to nonnegative
matrices.

So if we take a convex combination of the two, then we map
positive matrices to positive matrices.

This means that we can make the negative term in the
polynomial from P more negative until the convex
combination maps positive matrices to nonnegative matrices.

Thus this convex combination is not extremal.
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The cone generated by Pn,2n is non-polyhedral

Theorem

For all n ≥ 2, P2,2n is non-polyhedral.

Assume for contradiction that Pn,2n is a polyhedral cone.

We take X and P from the previous slides as the sets that are
all the extremal vectors for Pn,2n.

By the previous lemma the line connecting polynomials from
X and P can’t be extremal.

This implies that we need to add additional extremal vectors
to P.

Continuing this process gives that P can’t be a finite set.
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Next steps

Can we get any ideas on what these polynomials in Pn,2n with
negative coefficients look like?

Our guess is that there exist some number of quadratic form
inequalities of the coefficients of the polynomial that
determine if it is in Pn,2n.

If those quadratic forms exist, can we extend the
characterization to Pn,2n+k?
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It’s about the cones
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Questions?
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