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Nonnegative Inverse Eigenvalue Problem (NIEP)

Given a finite list Λ = {s1, ..., sn} of complex numbers, the NIEP
asks for necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n entrywise-nonnegative matrix.
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Background on the problem

In pursuit of a solution to the NIEP, Loewy and London
[MR0480563] posed the problem of characterizing all polynomials
that preserve all nonnegative matrices of a fixed order.
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Notation

Mn(R) denotes the set of all n-by-n real matrices.

R[t] is defined as all polynomials of a finite degree with real
coefficients

Pn := {p ∈ R[t] : p(A) ≥ 0,∀A ≥ 0,A ∈ Mn(R)}
The first n terms is defined as terms {0, 1, ..., n} of the
polynomial.

The last n terms is defined as terms {m,m − 1, ...,m − n},
where m is the degree of the polynomial.

The set ⟨m⟩ are the natural numbers from 0 to m inclusive.

Benjamin J. Clark and Pietro Paparella

Polynomials that preserve nonnegative matrices



Background and notation Results from special matrices Characterization for 2x2 Next steps

Remainder polynomials

The polynomial

p(r ,n)(x) :=
∑

k≡r mod n

akx
k ,

is called the r mod n part of p or the r mod n remainder
polynomials.
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Circulant matrices

A circulant is a matrix of the form

A = circ(a0, a1, . . . , an−1) =


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0

 .

There is a special type of circulant called the fundamental
circulant or push circulant which has the following form

C := circ(0, 1, 0, ..., 0) =


0 1

0 1
. . .

. . .

0 1
1 0
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Fundamental circulant

Any circulant matrix can be decomposed into a polynomial
made with the fundamental circulant. Let
A = circ(a0, a1, . . . , an−1), then

A = pA(C ) = an−1C
n−1 + an−2C

n−2 + · · ·+ a1C + a0I .

The fundamental circulant forms a cycle of length n, that is
Cm = Cnq+r = C r for any m ∈ N, r ∈ ⟨n − 1⟩.
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Polynomials and the fundamental circulant

Using the fact that the fundamental circulant forms cycles, we can
“decompose” our polynomial into it’s n remainder polynomials.

p(xC ) =
m∑
j=0

ajx
jC j

=
m∑
j=0

ajx
jC j mod n

= circ

 n−1∑
j≡0 mod n

ajx
j ,

n−1∑
j≡1 mod n

ajx
j , . . . ,

n−1∑
j≡n−1 mod n

ajx
j


= circ

(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.
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Circulants Results

For a polynomial p to be in Pn the following are necessary

The n remainder polynomials of p must be in P1.

For a polynomial p to be in Pn, the first n terms of p must be
nonnegative.

For a polynomial p to be in Pn, the last n terms of p must be
nonnegative.

These results can be derived from

p(xC ) = circ
(
p(0,n)(x), p(1,n)(x), . . . , p(n−1,n)(x)

)
.
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Jordan Block

If n ∈ N, n > 1, and λ ∈ C, then Jn(λ) denotes the Jordan block
with eigenvalue λ, i.e.,

Jn(λ) =


λ 1

λ 1
. . .

. . .

λ 1
λ

 ∈ Mn(R).
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Jordan Blocks Results

If p ∈ Pn, then p, p(1), p(2), ..., p(n−1) ∈ P1

This comes from the following fact

p(J(x)) =



1 ··· k ··· n

1 p(x) · · · p(k−1)(x)
(k−1)! · · · p(n−1)(x)

(n−1)!

...
. . .

. . .
...

k p(x) p(k−1)(x)
(k−1)!

...
. . .

...
n p(x)
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Lemma allowing positive matrices

Lemma

If p ∈ R[x ], then p ∈ Pn if and only if p(A) ≥ 0 whenever A > 0.

Proof.

Follows from the continuity of p and the fact that the set of
positive matrices of order n is dense in the set of all nonnegative
matrices of order n.
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Lemma 2x2 matrix similar form

Lemma

Let A ∈ M2(R) and suppose that A > 0. If σ(A) = {ρ, µ}, with
ρ > |µ|, then A is similar to a matrix of the form

1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
,

where α > 0.
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Proof

By the Perron–Frobenius theorem for positive matrices, there is a
positive vector x such that Ax = ρx . If D = diag(x1, x2), then the
positive matrix

B := D−1AD

has row sums equal to ρ. Thus, there is an invertible matrix

Ŝ =

[
1 â

1 b̂

]
such that

B = Ŝ

[
ρ 0
0 µ

]
Ŝ−1.
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Proof cont.

If

S := Ŝ

[
1 0
0 1/â

]
=

[
1 1
1 a

]
,

where a = b̂/â, then

B = S

[
ρ 0
0 µ

]
S−1.
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Proof cont.

Furthermore, a < 0 (otherwise,

B =
1

1− a

[
aρ− µ µ− ρ
a(ρ− µ) aµ− ρ

]
and b12 < 0). Thus,

S =

[
1 1
1 −α

]
, α > 0,

and

B =
1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
. (1)
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Characterization of 2× 2 nonnegative matrices

Theorem

If p ∈ R[x ], then p ∈ P2 if and only if pe , po , p
′ ∈ P1 and

yp(x) + xp(−y) ≥ 0 for all 0 < y < x .
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Proof of 2x2 case, necessary

If p ∈ P2, the circulants and Jordan blocks show
pe , po , p

′ ∈ P1.

Let ρ and µ be real numbers such that 0 < µ ≤ ρ and let

A =

[
0 ρ
µ ρ− µ

]
=

1

ρ+ µ

[
ρ 1
−µ 1

] [
−µ 0
0 ρ

] [
1 −1
µ ρ

]
,

then

p(A) =
1

ρ+ µ

[
ρp(−µ) + µp(ρ) ρ(p(ρ)− p(−µ))
µ(p(ρ)− p(−µ)) ρp(ρ) + µp(−µ)

]
≥ 0.
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Proof of 2x2 case, sufficient

If pe , po , p
′ ∈ P1 and yp(x) + xp(−y) ≥ 0 for all 0 < y < x ,

then let A be a positive matrix with spectrum {ρ, µ} by our
Lemma we can assume A is similar to a matrix of the form

B =
1

1 + α

[
αρ+ µ ρ− µ
α(ρ− µ) αµ+ ρ

]
.

The worst case for α is µ/ρ. Following that we can
diagonalize B with diagonal entries ρ and −µ the polynomial
of B can be written as

p(B) = Sp(D)S−1 =
1

1 + α

[
αp(ρ)− p(−µ) p(ρ)− p(µ)
α(p(ρ)− p(µ)) αp(µ) + p(ρ)

]
.
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Ratio condition?

The ratio condition is defined as yp(x) + xp(−y) ≥ 0 for all
0 < y < x .

If the polynomial is totally even, p = pe , then the polynomial
always satisfies the ratio condition. This comes from
pe(−y) = pe(y).

If the polynomial is totally odd, p = po , then the polynomial
satisfies the ratio condition if and only if p′′ ∈ P2. This
follows from po(−y) = −po(y) and the ratio condition
becomes yp(x)− xp(y) ≥ 0 for all 0 < y < x .
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Next steps

Explore more into what the ratio condition means and look for
ways to generalize it past the 2x2 case.

Investigate the relationship between the NIEP and
characterizing Pn.

Give explicit condition for being in P3.

Give explicit conditions for polynomials preserving nonnegative
circulants.
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Questions?
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