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Background
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Positive or irreducibly nonnegative

A matrix is called positive (nonnegative) if all of its entries are
positive (nonnegative).

A nonnegative matrix is called irreducible if its associated
directed graph is strongly connected (every vertex can reach
every other vertex).
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Spectrum

The spectrum of a matrix is the set (technically multiset) of
eigenvalues of that matrix.

This means that spectral problems and spectral theory are just
the study of sets of eigenvalues of matrices.

Usually when studying spectral problems we are either
interested in a class of spectra or a class of matrices who have
a given spectra.
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Perron-Frobenius theorem

Theorem

Let A be a nonnegative matrix with spectrum
σ(A) = {λ1, . . . , λn}, then

ρ(A) = max{|λ1|, |λ2|, . . . , |λn|} ∈ σ(A).

This is the foundation result to nonnegative matrix analysis.

The theorem is stronger when dealing with positive or
nonnegative irreducible matrices.
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Examples

[
1 1
1 1

]
= W diag(2, 0)W−1[

ϵ 1
1 ϵ

]
= W diag(ϵ+ 1, ϵ− 1)W−1

0 1 0
0 0 1
1 0 0

 = W diag(1, ω, ω2)W−1
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Spectral properties of nonnegative matrices

All eigenvalues of real matrices are either real or come in
conjugate pairs.

All eigenvalues of real symmetric matrices are real.

All irreducible nonnegative matrices and positive matrices are
diagonally similar to a stochastic matrix.

All the eigenvalues of a stochastic matrix have modulus less
than or equal to 1.
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Where can those eigenvalues be?
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Where can those eigenvalues be?

A natural starting question is given a fixed Perron root, where
can any of the remaining eigenvalues of a nonnegative matrix
live?

From the Perron-Frobenius theorem, all the eigenvalues must
live in ball of a fixed radius.
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Timeline to a solution

1936: Romanovsky found that eigenvalues of stochastic
matrices can only lie on the unit circle at roots of unity.

1937: Kolmogorov posed the problem of finding the location
of roots of stochastic matrices.

1945-1946: Dmitriev and Dynkin wrote two papers where they
give a partial solution to the region of where eigenvalues of
stochastic matrices can lie for n ≤ 5.
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Timeline to a solution cont.

1951: Karpelevič wrote a followup paper to Dmitriev and
Dynkin where he fully solves the problem.

1997: Ito wrote a paper which contains the current most
simplified form of Karpelevič’s theorem.
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Arcing your way to a solution

Arcing your way to a solution

The following Theorem is Ito’s simplified version of the Karpelevič
region.

Theorem

The region Mn is symmetric relative to the real axis, is included in
the unit disc |z | ≤ 1, and intersects the circle |z | = 1 at points
e2πia/b, where a and b run over relatively prime integers. The
boundary of Mn, consists of these points and of curvilinear arcs
connecting them in circular order.
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Arcing your way to a solution

Karpelevič region theorem cont.

Theorem

Let the endpoints of an arc be e2πia1/b1 and e2πia2/b2 (b1 < b2).
Each of these arcs is given by the following parametric equation:

λb2(λb1 − s)[n/b1] = (1− s)[n/b1]λb1[n/b1],

where the real parameter s runs over the interval 0 ≤ s ≤ 1 and
where [n/m] is the second to last step of remainders in Euclid’s
algorithm.
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Arcing your way to a solution

Karpelevič arcs for n = 3, 4

For n = 3 the arcs are given by

(λ− s)3 = (1− s)3

λ3 = s + (1− s)λ.

For n = 4 the arcs are given by

(λ− s)4 = (1− s)4

λ4 = s + (1− s)λ

(λ2 − s)2 = (1− s)2λ
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Arcing your way to a solution

Karpelevič region n = 3

Figure: Karpelevič region of n = 3
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Arcing your way to a solution

Karpelevič region n = 4

Figure: Karpelevič region of n = 4, not to scale
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Double the stochastic, double the challenge

What about doubly stochastic matrices?

Locating the region where spectra of double stochastic
matrices live is unsolved.

In particular it is unsolved for n ≥ 5 (as we will see is true for
most of these problems).
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Where are all those eigenvalues?
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NIEP

Given a finite list Λ = {s1, ..., sn} of complex numbers, the
nonnegative inverse eigenvalue problem (NIEP) asks for
necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n nonnegative matrix.

An identical formulation of the NIEP asks instead for
necessary and sufficient conditions for a list of real numbers to
be the coefficients of the characteristic polynomial of a
nonnegative matrix.
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NIEP current status

The NIEP is solved for n ≤ 4.

The solutions for n = 1, 2, 3 are fairly easy to derive from
conditions involving the trace (sum of the eigenvalues),
moment (sums of powers of the eigenvalues), and Perron root
conditions.

Meehan in 1998 and Torre-Mayo et al. in 2005 both solved
the n = 4 case. Both of them are very long and complicated.
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Lets make it real

RNIEP

When a problem is hard, give up and pick an easier one.

A simplification of the NIEP is the real NIEP (RNIEP) where we
are given a list of real numbers and asked for necessary and
sufficient conditions for it to be the spectra of a nonnegative
matrix.
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Lets make it real

RNIEP current status

This problem is also only solved for n ≤ 4.

The solution for n = 4 however is substantially easier only
requiring the trace to be nonnegative and for a Perron root to
exist.

The trace/Perron conditions are known not to be sufficient for
n ≥ 5.
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Maybe some symmetry?

SNIEP

A further simplification of the NIEP is the symmetric NIEP
(SNIEP) where we are given a list of real numbers and asked for
necessary and sufficient conditions for it to be the spectra of a
symmetric nonnegative matrix.
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Maybe some symmetry?

SNIEP current status, more of the same

This problem is also only solved for n ≤ 4.

The solutions for n ≤ 4 are equivalent to the RNIEP.

This raises the question: are the RNIEP and SNIEP different?
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Maybe some symmetry?

SNIEP and RNIEP are different

Egleston, Lenker, and Narayan showed that(
1,

71

97
,−44

97
,−54

97
,−70

97

)
is realizable in the RNIEP, but not in the SNIEP.
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Real algebraic geometry to the rescue
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Semialgebraic set

Definition

Let F be a real closed field. A subset S of Fn is called a
semialgebraic set if it is a finite union of sets defined by polynomial
equalities of the form

{x ∈ Fn : P(x) = 0}

and inequalities of the form

{x ∈ Fn : P(x) ≥ 0}.

A semialgebraic set is called basic if no unions are needed.
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Elementary symmetric functions

Definition

The kth elementary symmetric function of n complex numbers
σ = (λ1, λ2, . . . , λn), for k ≤ n is

Sk(σ) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij .
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Elementary symmetric functions example

For n = 2 the elementary symmetric functions are

S1(λ1, λ2) = λ1 + λ2

S2(λ1, λ2) = λ1λ2

For n = 3 the elementary symmetric functions are

S1(λ1, λ2, λ3) = λ1 + λ2 + λ3

S2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3

S3(λ1, λ2, λ3) = λ1λ2λ3
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Sums of the principal minors

Definition

A minor of a matrix A is the determinant of sub matrix of A. A
minor is called principal if the picked rows and columns of the
submatrix are the same.

Definition

For a given matrix A, denote Ek(A) to be the sums of the principal
minors of size k of A.
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Coefficients of the characteristic polynomial

For a given matrix A let

pA(t) = tn + (−1)a1t
n−1 + . . . (−1)n−1an−1t + (−1)nan

be its characteristic polynomial, then

ak = Ek(A) = Sk(σ(A)).
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The problem is solvable and the algorithm exists, but we can’t use it

Embedding the NIEP (and sub-problems) as basic
semialgebraic sets

Using the equality between Ek(A) and Sk(σ) we can embed the
NIEP as a semialgebraic set in n3 dimensions. The inequalities are

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

Question

What is wrong with the above semialgebraic set?
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The problem is solvable and the algorithm exists, but we can’t use it

Embedding the NIEP cont.

To overcome the fact that the NIEP can have complex
eigenvalues we need to use the fact that the elementary
symmetric functions maps complex conjugates to real
numbers.

Using this, we can make modified elementary symmetric
functions based on the number of conjugate pairs.

This gives that the NIEP is the union of ⌊(n − 1)/2⌋ basic
semialgebric sets in n3 dimensions.
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The problem is solvable and the algorithm exists, but we can’t use it

SNIEP’s embedding as basic semialgebraic set

The SNIEP is embedded as

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

aij − aji = 0

So the SNIEP and RNIEP are basic semialgebric sets in n3

dimensions.
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The problem is solvable and the algorithm exists, but we can’t use it

Project your way to a solution

One of the most important properties of a semialgebraic set is
that they are closed under projection. This is known as the
Tarski–Seidenberg theorem.

This means that if you can find a semialgebraic set in an
embedded space, then we know there exists a semialgebraic
set in the lower dimensional space.

Therefore the NIEP and related subproblems are semialgebric
sets, so a finite union/intersection of polynomial inequalities
solves the NIEP.
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The problem is solvable and the algorithm exists, but we can’t use it

Cylindrical algebraic decomposition

Collin’s algorithm or Cylindrical algebraic decomposition is the
algorithm for computing the projections of a semialgebric set.

It is a major improvement upon Tarski-Seidenberg’s result by
giving a straight forward approach to computing the
projection.

This means that the NIEP is solvable and the algorithm for
solving it already exists. However...
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The problem is solvable and the algorithm exists, but we can’t use it

Doubly exponential means computers don’t help

Cylindrical algebraic decomposition has a doubly exponential
computing time.

Computing the solution to the NIEP for n = 2 took less than
1 second.

I stopped my attempt for computing the solution to the NIEP
for n = 3 after 13 hours. The software claimed to be
approximately 2% done.

The first result that would be interesting would be n = 4 and
the first new result would be n = 5. So even with massive
parallelization computers won’t be able to brute force the
problem.
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Concluding remarks
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Summary

Locating one root (other than the Perron root) is a solved
problem for stochastic, but not doubly stochastic, matrices.

The NIEP and most prominent subproblems are open for
n ≥ 5.

The NIEP is solvable by the unions and intersections of
finitely many polynomial inequalities.

There exists an algorithm to compute both the solution to the
NIEP and the matrices that form the boundary, however the
algorithm is so slow that it will never be practical.
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Next steps and avenues for potential research

Is there a approximation for CAD that runs in closer to
polynomial time? This may give valuable necessary or
sufficient conditions if we can bound the error.

Gröbner basis and ideals as a tool for projecting algebraic
varieties.

Learn more about what makes the NIEP semialgebric set
special. Perhaps it has some property that makes projections
easier to compute.
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Interesting papers/book

Johnson, Marijuán, Paparella and Pisonero.
The NIEP.
Operator Theory, Operator Algebras, and Matrix Theory

Joanne Swift.
Location of characteristic roots of stochastic matrices.
McGi11 University PhD thesis.

Bochnak , Coste , and Roy.
Real Algebraic Geometry.
Springer-Verlag Berlin.
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Jokes?

Patrick:

Put your Artin soul into it.
The resultant of your hard work.
This is certainly isomorphic to a joke.

Garret:

The NIEP is neat.
Alternative nonnegative matrix definition [,].

Jared:

There are a variety of ways to move forward.
We are scheming for a solution.
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Questions?
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