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NIEP

Given a finite list Λ = {s1, ..., sn} of complex numbers, the
nonnegative inverse eigenvalue problem (NIEP) asks for
necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n nonnegative matrix.

An identical formulation of the NIEP asks instead for
necessary and sufficient conditions for a list of real numbers to
be the coefficients of the characteristic polynomial of a
nonnegative matrix.
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NIEP current status

The NIEP is solved for n ≤ 4.

The solutions for n = 1, 2, 3 are fairly easy to derive from
conditions involving the trace, reality, moment (sums of
powers of the eigenvalues), and Perron root condition.

Meehan in 1998 and Torre-Mayo et al. in 2005 both solved
the n = 4 case. Both of them are very long and complicated.
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RNIEP

When a problem is hard, give up and make it easier.

A simplification of the NIEP is the real NIEP (RNIEP) where we
are given a list of real numbers and asked for necessary and
sufficient conditions for it to be the spectra of a nonnegative
matrix.

The nonnegative inverse eigenvalue problem is solvable and the algorithm to solve it exists. So why is the problem unsolved?



Background on the NIEP Real algebraic geometry Solvability of the NIEP The algorithm and its problems Concluding remarks

RNIEP current status

This problem is also only solved for n ≤ 4.

The solution for n = 4 however is substantially easier only
requiring the trace to be nonnegative and for a Perron root to
exist.

The trace/Perron conditions are known not to be sufficient for
n ≥ 5.
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SNIEP

A further simplification of the NIEP is the symmetric NIEP
(SNIEP) where we are given a list of real numbers and asked for
necessary and sufficient conditions for it to be the spectra of a
symmetric nonnegative matrix.
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SNIEP current status, more of the same

This problem is also only solved for n ≤ 4.

The solutions for n ≤ 4 are equivalent to the RNIEP.

This raises the question: are the RNIEP and SNIEP different?
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SNIEP and RNIEP are different

Egleston, Lenker, and Narayan showed that(
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is realizable in the RNIEP, but not in the SNIEP.
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Real algebraic geometry
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Semialgebraic set

Definition

Let F be a real closed field. A subset S of Fn is called a
semialgebraic set if it is a finite union of a finite intersection of sets
defined by polynomial equalities of the form

{x ∈ Fn : P(x) = 0}

and inequalities of the form

{x ∈ Fn : P(x) > 0}.

A semialgebraic set is called basic if no unions are needed.
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Example of semialgebraic set

The basic semialgebraic set to the
right is defined as the intersection
of the following two inequalities.

x2 + y2 − 9 ≤ 0

x2 −
(
y +

3

2

)2

− 1

2
≥ 0.
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Elementary symmetric functions

Definition

The kth elementary symmetric function of n complex numbers
σ = (λ1, λ2, . . . , λn), for k ≤ n is

Sk(σ) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij .
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Elementary symmetric functions example

For n = 2 the elementary symmetric functions are

S1(λ1, λ2) = λ1 + λ2

S2(λ1, λ2) = λ1λ2

For n = 3 the elementary symmetric functions are

S1(λ1, λ2, λ3) = λ1 + λ2 + λ3

S2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3

S3(λ1, λ2, λ3) = λ1λ2λ3
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Sums of the principal minors

Definition

A minor of a matrix A is the determinant of sub matrix of A. A
minor is called principal if the picked rows and columns of the
submatrix are the same.

Definition

For a given matrix A, denote Ek(A) to be the sums of the principal
minors of size k of A.
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Coefficients of the characteristic polynomial

For a given matrix A let

pA(t) = tn + (−1)a1t
n−1 + . . . (−1)n−1an−1t + (−1)nan

be its characteristic polynomial, then

ak = Ek(A) = Sk(σ(A)).
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Solvability of the NIEP
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Embedding the NIEP as a semialgebraic set

Let A ∈ M+
n with spectra σ. Using the equality between Ek(A) and

Sk(σ) we can embed nonnegative matrices and their spectra as a
semialgebraic set in Rn3 . The inequalities are

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

Question

What is wrong with the above semialgebraic set?
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Embedding the NIEP cont.

To overcome the fact that nonnegative matrices can have
complex eigenvalues we need to use the fact that the
elementary symmetric functions maps complex conjugates to
real numbers.

Using this, we can make modified elementary symmetric
functions based on the number of conjugate pairs.

This gives that the solution to the NIEP is the union of
⌊(n − 1)/2⌋ basic semialgebric sets in Rn3
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3x3 NIEP embedded semialgebraic set

If σ = (λ1, λ2, λ3) is real, then

aij ≥ 0 for all i , j ∈ {1, 2, 3}
E1(A)− λ1 − λ2 − λ3 = 0

E2(A)− λ1λ2 − λ1λ3 − λ2λ3 = 0

E3(A)− λ1λ2λ3 = 0

or if σ = (λ1, λ2 + iλ3, λ2 − iλ3), then

aij ≥ 0 for all i , j ∈ {1, 2, 3}
E1(A)− λ1 − 2λ2 = 0

E2(A)− 2λ1λ2 − λ2
2 − λ2

3 = 0

E3(A)− λ1λ
2
2 − λ1λ

2
3 = 0
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SNIEP’s and RNIEP’s embedding as basic semialgebraic
sets

For A ∈ M+
n with spectra σ, the SNIEP is embedded as

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

aij − aji = 0

The embedded SNIEP and RNIEP are basic semialgebric sets in
Rn3 .
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Project your way to a solution

One of the most important properties of a semialgebraic set is
that they are closed under projection. This is known as the
Tarski–Seidenberg theorem.

This means that if you can find a semialgebraic set in an
embedded space, then we know there exists a semialgebraic
set in the projected space.

Therefore the solution to the NIEP and related subproblems
are semialgebric sets. Thus a finite union/intersection of
polynomial inequalities solves the NIEP.
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The algorithm and its problems
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Cylindrical algebraic decomposition

Collin’s algorithm or Cylindrical algebraic decomposition is the
algorithm for computing the projections of a semialgebric set.

It is a major improvement upon Tarski-Seidenberg’s result by
giving a straight forward approach to computing the
projection.

This means that the NIEP is solvable and the algorithm for
solving it already exists. However...
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Doubly exponential means computers don’t help

Cylindrical algebraic decomposition has a doubly exponential
computing time.

Computing the solution to the NIEP for n = 2 took less than
1 second.

I stopped my attempt for computing the solution to the NIEP
for n = 3 after 13 hours. The software claimed to be
approximately 2% done.

The first result that would be interesting would be n = 4 and
the first new result would be n = 5. So even with massive
parallelization computers won’t be able to brute force the
problem.
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Concluding remarks
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Summary

The NIEP and most prominent subproblems are open for
n ≥ 5.

The NIEP is solvable by the unions and intersections of
finitely many polynomial inequalities.

There exists an algorithm to compute both the solution to the
NIEP and the matrices that form the boundary, however the
algorithm is so slow that it will never be practical.
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Next steps and avenues for potential research

The 5x5 SNIEP has only 10 variables to project in its
embedded space. So it seems primed for a brute force
approach.

Finding a bound on the number of polynomials and their
degrees for the inequalities in the projected space of the NIEP
is crucial for knowing how practical this approach is.

Learn more about what makes the NIEP semialgebric set
special. Perhaps it has some property that makes projections
easier to compute.
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Interesting papers/book

Johnson, Marijuán, Paparella and Pisonero.
The NIEP.
Operator Theory, Operator Algebras, and Matrix Theory

Joanne Swift.
Location of characteristic roots of stochastic matrices.
McGi11 University PhD thesis.

Bochnak , Coste , and Roy.
Real Algebraic Geometry.
Springer-Verlag Berlin.
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Questions?
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