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NIEP

• Given a finite list Λ = {s1, ..., sn} of complex numbers, the
nonnegative inverse eigenvalue problem (NIEP) asks for
necessary and sufficient conditions such that Λ is the
spectrum of an n-by-n nonnegative matrix.

• A different formulation of the NIEP asks instead for necessary
and sufficient conditions for a list of real numbers to be the
coefficients of the characteristic polynomial of a nonnegative
matrix.
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NIEP current status

• The NIEP is solved for n ≤ 4.

• The solutions for n = 1, 2, 3 are fairly easy to derive from
conditions involving the trace, reality, moment (sums of
powers of the eigenvalues), and Perron condition (the largest
eigenvalue in modulus is nonnegative).

• Meehan in 1998 and Torre-Mayo et al. in 2005 both solved
the n = 4 case. Both of them are more complicated.
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RNIEP

A simplification of the NIEP is the real NIEP (RNIEP) where we
are given a list of real numbers and asked for necessary and
sufficient conditions for it to be the spectra of a nonnegative
matrix.
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RNIEP current status

• This problem is also only solved for n ≤ 4.

• The solution for n = 4 however is substantially easier, only
requiring the trace to be nonnegative and for a Perron root to
exist.

• The trace/Perron conditions are known not to be sufficient for
n ≥ 5.
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SNIEP

A further simplification of the NIEP is the symmetric NIEP
(SNIEP) where we are given a list of real numbers and asked for
necessary and sufficient conditions for it to be the spectra of a
symmetric nonnegative matrix.
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SNIEP current status, more of the same

• This problem is also only solved for n ≤ 4.

• The solutions for n ≤ 4 are equivalent to the RNIEP.

• This raises the question: are the RNIEP and SNIEP different?
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SNIEP and RNIEP are different

Egleston, Lenker, and Narayan showed that(
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)
is realizable in the RNIEP, but not in the SNIEP.

An experimental approach to the NIEP using algebraic geometry 10 / 44



Background Building the semialgebraic sets for low orders Experimental approach Ideas and directions

Stochastic restrictions

• A final common restriction to these problems is to force all
the matrices that are picked from to be either singly or doubly
stochastic.

• For some problems like the NIEP adding the stochastic
restriction and solving that problem would be equivalent to
solving the original problems.

• For other problems like the SNIEP we can’t pull from both
stochastic and symmetric matrices at the same time and still
get the same solution set.
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DS-SNIEP

• When we add the doubly stochastic restriction to the SNIEP
(DS-SNIEP) we get that matrices we are pulling being doubly
stochastic symmetric.

• For the eigenvalues, this guarantees all eigenvalues real and in
the interval [−1, 1].

• This problem is solved only for n ≤ 3.
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Semialgebraic set

Definition

Let F be a real closed field. A subset S of Fn is called a
semialgebraic set if it is a finite union of a finite intersection of sets
defined by the solutions of polynomial inequalities of the form

{x ∈ Fn : P(x) ∗ 0}

where ∗ could be =, ≥, ≤, >, or <.

A semialgebraic set is called basic if no unions are needed.
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Elementary symmetric functions

Definition

The kth elementary symmetric function of n complex numbers
σ = (λ1, λ2, . . . , λn), for k ≤ n is

Sk(σ) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij .
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Elementary symmetric functions example

For n = 2 the elementary symmetric functions are

S1(λ1, λ2) = λ1 + λ2

S2(λ1, λ2) = λ1λ2

For n = 3 the elementary symmetric functions are

S1(λ1, λ2, λ3) = λ1 + λ2 + λ3

S2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3

S3(λ1, λ2, λ3) = λ1λ2λ3
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Sums of the principal minors

Definition

A minor of a matrix A is the determinant of sub matrix of A. A
minor is called principal if the picked rows and columns of the
submatrix are the same.

Definition

For a given matrix A, denote Ek(A) to be the sums of the principal
minors of size k of A.
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Coefficients of the characteristic polynomial

For a given matrix A let

pA(t) = tn + (−1)a1t
n−1 + · · ·+ (−1)n−1an−1t + (−1)nan

be its characteristic polynomial, then

ak = Ek(A) = Sk(σ(A)).
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Embedding the NIEP as a semialgebraic set

Let A ∈ M+
n with spectra σ. Using the equality between Ek(A) and

Sk(σ) we can embed nonnegative matrices and their spectra as a
semialgebraic set in Rn2+n. The inequalities are

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

Question

What is wrong with the above semialgebraic set?
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Embedding the NIEP cont.

• To overcome the fact that nonnegative matrices can have
complex eigenvalues, we need to use the fact that the
elementary symmetric functions maps complex conjugates to
real numbers.

• Using this, we can make modified elementary symmetric
functions based on the number of conjugate pairs.

• This gives that the solution to the NIEP is the projection of
the union of ⌊(n − 1)/2⌋ basic semialgebraic sets in Rn2+n
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3x3 NIEP embedded semialgebraic set

If σ = (λ1, λ2, λ3) is real, then

aij ≥ 0 for all i , j ∈ {1, 2, 3}
E1(A)− λ1 − λ2 − λ3 = 0

E2(A)− λ1λ2 − λ1λ3 − λ2λ3 = 0

E3(A)− λ1λ2λ3 = 0

or if σ = (λ1, λ2 + iλ3, λ2 − iλ3), then

aij ≥ 0 for all i , j ∈ {1, 2, 3}
E1(A)− λ1 − 2λ2 = 0

E2(A)− 2λ1λ2 − λ2
2 − λ2

3 = 0

E3(A)− λ1λ
2
2 − λ1λ

2
3 = 0
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SNIEP’s and RNIEP’s embedding as basic semialgebraic sets

For A ∈ M+
n with spectra σ, the SNIEP is embedded as

aij ≥ 0 for all i , j ∈ {1, . . . , n}
Ek(A)− Sk(σ) = 0 for all k ∈ {1, . . . , n}

aij − aji = 0

The embedded SNIEP and RNIEP are basic semialgebraic sets in
Rn2+n.
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Project your way to a solution

• One of the most important properties of a semialgebraic set is
that they are closed under projection. This is known as the
Tarski–Seidenberg theorem.

• This means that if you can find a semialgebraic set in an
embedded space, then we know there exists a semialgebraic
set in the projected space.

• The reality condition and a finite union/intersection of
polynomial inequalities solves the NIEP.
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Cylindrical algebraic decomposition

• Collin’s algorithm or Cylindrical algebraic decomposition is the
algorithm for computing the projections of a semialgebraic set.

• It is a major improvement upon Tarski-Seidenberg’s result by
giving a straight forward approach to computing the
projection.

• This means that the NIEP is solvable and the algorithm for
solving it already exists. However...
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Doubly exponential means computers don’t help

• Cylindrical algebraic decomposition has a doubly exponential
computing time.

• Computing the solution to the NIEP for n = 2 took less than
1 second.

• I stopped my attempt for computing the solution to the NIEP
for n = 3 after 13 hours. The software claimed to be
approximately 2% done.

• The first result that would be interesting would be, n = 4 and
the first new result would be n = 5. So even with massive
parallelization, computers won’t be able to brute force the
problem.
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Semialgebraic sets for the NIEP up to n = 4

Theorem (Torre-Mayo et. al. Theorem 3)

Let P(x) = xn +
∑n

j=1(−1)jcjx
n−j be a characteristic polynomial

of degree n ≥ 3 of a nonnegative matrix A. Then

0 ≤ c1

0 ≤ (n − 1)c21 − 2nc2

c3 ≥


n−2
n

(
−c1c2 + n−1

3n

((
c21 − 2n

n−1
c2

)3/2
+ c31

))
if (n − 1)(n − 4)c21 < 2(n − 2)2c2,

(n−1)(n−3)

3(n−2)2
c31 − c1c2 otherwise.
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Semialgebraic sets for the NIEP up to n = 4 cont.

In terms of the coefficients of the characteristic polynomial,

P(x) = xn +
n∑

j=1

(−1)jcjx
n−j ,

the semialgebraic sets that make the NIEP are

• n = 1 : P(x) = x − c1

c1 ≥ 0

• n = 2 : P(x) = x2 − c1 + c2

c1 ≥ 0 ∧ c21 − 4c2 ≥ 0
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Semialgebraic sets for the NIEP up to n = 4 cont.

• n = 3 : P(x) = x3 − c1x
2 + c2x − c3

c1 ≥ 0 ∧ c21 − 3c2 ≥ 0 ∧ 27c3 + 9c1c2 − 2c31 ≥ 0 ∧
− 4c31c3 − c21c

2
2 + 18c1c2c3 + 4c32 + 27c23 ≥ 0

• n = 4 : P(x) = x4 − c1x
3 + c2x

2 − c3x + c4

c1 ≥ 0 ∧ 4c3 + 4c1c2 − c31 ≥ 0 ∧ 8c3 + 2c1c2 − c31 ≥ 0 ∧(
−c2 ≥ 0 ∨ −27c31c3 − 9c21c

2
2 + 108c1c2c3 + 32c32 + 108c23 ≥ 0

)
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Semialgebraic sets as a tool for the NIEP

Some things to note about the semialgebraic approach:

• The perron condition (The largest eigenvalue in modulus is
positive) is not necessary.

• Solving the RNIEP using these methods also gives a solution
to the NIEP.

• Checking where a given list is realizable can be done in linear
time with respect to the number of polynomial inequalities.
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How to numerically build the boundary polynomials?

• We can think of the semialgebraic set for the coefficients of
the characteristic polynomial as a n dimensional feasibility
region defined by n2 bounded and constrained parameters.

• With this, we can turn the problem into a series of
optimization problems of the form,

minEj subject to

Ei = ci for i ∈ {1, . . . , j − 1}

where the ci values are within the feasibility region defined by
E1, . . . ,Ej−1.
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Approach applied to the DS-SNIEP

• As mentioned above, the DS-SNIEP is still open for n ≥ 4.

• Since the matrices we are working with are stochastic and
symmetric, we know that the perron root will be 1 and that
the rest of the eigenvalues will be real. This allows us to plot
the feasibility region in 3d.
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Feasibility region 2d slices, E1 dependence on E2

Figure 1: DS-SNIEP n = 4 E1 dependence on E2
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Feasibility region 2d slices, E1 dependence on E3

Figure 2: DS-SNIEP n = 4 E1 dependence on E3
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Feasibility region 2d slices, E2 dependence on E3

Figure 3: DS-SNIEP n = 4 E2 dependence on E3
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Feasibility region of E3

Figure 4: DS-SNIEP n = 4 E2 dependence on E3
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Turn that region to the spectra

• The optimization process has the added benefit of returning
the matrix that was found for each optimized point.

• Using this, we can turn this region of feasibility for the
characteristic polynomials into a region of feasibility of the
spectra.
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Turn that region to the spectra

Figure 5: DS-SNIEP feasible spectral region
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Bringing the numerical region to a conjecture

• Given the points on the boundary of a feasibility region. We
can interpolate those points to build conjectures on solutions
to these spectra problems.

• Two major drawbacks with this approach are the difficulty in
finding the appropriate piecewise break points in higher
dimensions and the numerical instability that arise from higher
order optimizations.
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Theoretical improvements to the semialgebraic set.

• A major question with semialgebraic sets is how many
polynomials and of what degree do we need them.

• The worst case of the projection operation is 2n polynomials
per variable projected and per polynomial in the initial
constraints.

• My conjecture is that the NIEP forms a basic semialgebraic set
with respect to its coefficients of the characteristic polynomial.

• This would reduce the worst case number of polynomials to
n2.
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Improvements to the solver

• Write code to determine where the break-lines are in the
region.

• Allow for the solver to take more types of NIEP sub-problems
in.

• Better interpolation support.
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Interesting paper/book

[1] Johnson, Marijuán, Paparella and Pisonero.
The NIEP.
Operator Theory, Operator Algebras, and Matrix Theory

[2] Kamron Saniee.
A Simple Expression for Multivariate Lagrange Interpolation.
SIAM Undergraduate Research Online

[3] Bochnak, Coste, and Roy.
Real Algebraic Geometry.
Springer-Verlag Berlin.
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Questions?
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